Otoliths, calcium carbonate (CaCO 3 ) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite-a metastable polymorph of CaCO 3 . Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of Lake Sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while Lake Sturgeon otoliths are primarily composed of vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 5 22 model, a = 7.1443(4)Å, c = 25.350(4)Å, V = 1121.5(2) Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.Vaterite, a metastable polymorph of calcium carbonate (CaCO 3 ) 1 is of substantial interest as a naturally occurring biomaterial, and for its use as an additive in various consumer products ranging from paper and coatings to plastic and elastomer reinforcement to food supplements, oral hygiene aids, and cosmetics 2 . For instance, vaterite's greater ability to dissolve in body fluids compared to other polymorphs of CaCO 3 makes it desirable for manufacturing nanocapsules for delivering drugs at the cellular level 3 . Despite the realized and potential importance of vaterite to humans, some of the most basic facts about this compound such as its crystalline structure have challenged researchers. Currently, more than a dozen crystal structure models have been proposed with little weight favoring one over the others 1 . Many basic properties of vaterite are unresolved due in part to the rarity of naturally occurring vaterite. Naturally occurring vaterite structures include human gallstones and portions of fish ear bones, or otoliths, from primitive fishes such as sturgeons 4 or sporadically from more modern fishes such as salmon and trout, and are potentially formed in response to physiological stress, especially thermal stress 5 and captive rearing 6,7 . In fact, only a few reliable sources of biogenic vaterite exist for study including sea squirt spicules 8,9 and otoliths of sturgeons, but only rarely those of other fish or animals. The ability of making biogenic vaterite has apparently been retained through evolution in some fish such as salmonids because these fishes sometimes have vaterite patches in their otoliths 4,10 , but sturgeons are really the sole reliable source of vaterite from fish otoliths. Unlike...