The efficient evaluation of multivariate polynomials at many points is an important operation for polynomial system solving. Kedlaya and Umans have recently devised a theoretically efficient algorithm for this task when the coefficients are integers or when they lie in a finite field. In this paper, we assume that the set of points where we need to evaluate is fixed and "sufficiently generic". Under these restrictions, we present a quasi-optimal algorithm for multi-point evaluation over general fields. We also present a quasi-optimal algorithm for the opposite interpolation task. * . This paper is part of a project that has received funding from the French "Agence de l'innovation de défense".