The formalism for computing the signal-to-noise ratio (SNR) for laser radar is reviewed and applied to the tasks of target detection, direction-finding, and phase change estimation with squeezed light. The SNR for heterodyne detection of coherent light using a squeezed local oscillator is lower than that obtained using a coherent local oscillator. This is true for target detection, for phase estimation, and for direction-finding with a split detector. Squeezing the local oscillator also lowers SNR in balanced homodyne and heterodyne detection of coherent light. Loss places an upper bound on the improvement that squeezing can bring to direct-detection SNR.