We introduce generalized subadditive generator functions for mixed integer linear programs. Our results extend Klabjan’s work from pure integer programs with nonnegative entries to general MILPs. These functions suffice to achieve strong subadditive duality. Several properties of the functions are shown. We then use this class of functions to generate certificates of optimality for MILPs. We have performed a computational test study on knapsack problems to investigate the efficiency of the certificates.