2012 IEEE Southwest Symposium on Image Analysis and Interpretation 2012
DOI: 10.1109/ssiai.2012.6202488
|View full text |Cite
|
Sign up to set email alerts
|

Subband coding for large-scale scientific simulation data using JPEG 2000

Abstract: Abstract-The ISO/IEC JPEG 2000 image coding standard is a family of source coding algorithms targeting high-resolution image communications. JPEG 2000 features highly scalable embedded coding features that allow one to interactively zoom out to reduced resolution thumbnails of enormous data sets or to zoom in on highly localized regions of interest with very economical communications and rendering requirements. While intended for fixed-precision input data, the implementation of the irreversible version of the… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2014
2014
2020
2020

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…In situ analysis algorithms may transform data into reduced representations or surrogate models in order to mitigate large data size, high dimensionality, or long computation times. Low-rank approximation (Austin et al, 2016), statistical summarization (Biswas et al, 2018;Dutta et al, 2017;Hazarika et al, 2018;Lawrence et al, 2017;Lohrmann et al, 2017;Thompson et al, 2011), topological segmentation (Gyulassy et al, 2012(Gyulassy et al, , 2019Landge et al, 2014;Weber, 2013, 2014), wavelet transformation (Li et al, 2017;Salloum et al, 2018), lossy compression (Brislawn et al, 2012;Di and Cappello, 2016;Lindstrom, 2014), geometric modeling (Nashed et al, 2019; Peterka et al, 2018), and feature detection (Guo et al, 2017) may be used to generate reduced or surrogate models.…”
Section: Analysis Algorithmsmentioning
confidence: 99%
See 1 more Smart Citation
“…In situ analysis algorithms may transform data into reduced representations or surrogate models in order to mitigate large data size, high dimensionality, or long computation times. Low-rank approximation (Austin et al, 2016), statistical summarization (Biswas et al, 2018;Dutta et al, 2017;Hazarika et al, 2018;Lawrence et al, 2017;Lohrmann et al, 2017;Thompson et al, 2011), topological segmentation (Gyulassy et al, 2012(Gyulassy et al, , 2019Landge et al, 2014;Weber, 2013, 2014), wavelet transformation (Li et al, 2017;Salloum et al, 2018), lossy compression (Brislawn et al, 2012;Di and Cappello, 2016;Lindstrom, 2014), geometric modeling (Nashed et al, 2019; Peterka et al, 2018), and feature detection (Guo et al, 2017) may be used to generate reduced or surrogate models.…”
Section: Analysis Algorithmsmentioning
confidence: 99%
“…Research is required to modify existing post hoc algorithms and develop new in situ algorithms to satisfy the needs of modern use cases on emerging system architectures that can feature massive scale, many cores, deep memory hierarchies, or embedded lightweight edge devices. Examples of such algorithms include reduced representations and low-rank approximations (Austin et al, 2016), statistical (Biswas et al, 2018;Dutta et al, 2017;Hazarika et al, 2018;Thompson et al, 2011), topological (Gyulassy et al, 2012(Gyulassy et al, , 2019Landge et al, 2014;Weber, 2013, 2014), wavelets (Li et al, 2017;Salloum et al, 2018), compression (Brislawn et al, 2012;Di and Cappello, 2016;Lindstrom, 2014), and feature detection (Guo et al, 2017) methods. Surrogate models and multifidelity models can be geometric (Nashed et al, 2019;Peterka et al, 2018), statistical (Lawrence et al, 2017;Lohrmann et al, 2017), or neural network (He et al, 2019).…”
Section: In Situ Algorithmsmentioning
confidence: 99%