“…Research is required to modify existing post hoc algorithms and develop new in situ algorithms to satisfy the needs of modern use cases on emerging system architectures that can feature massive scale, many cores, deep memory hierarchies, or embedded lightweight edge devices. Examples of such algorithms include reduced representations and low-rank approximations (Austin et al, 2016), statistical (Biswas et al, 2018;Dutta et al, 2017;Hazarika et al, 2018;Thompson et al, 2011), topological (Gyulassy et al, 2012(Gyulassy et al, , 2019Landge et al, 2014;Weber, 2013, 2014), wavelets (Li et al, 2017;Salloum et al, 2018), compression (Brislawn et al, 2012;Di and Cappello, 2016;Lindstrom, 2014), and feature detection (Guo et al, 2017) methods. Surrogate models and multifidelity models can be geometric (Nashed et al, 2019;Peterka et al, 2018), statistical (Lawrence et al, 2017;Lohrmann et al, 2017), or neural network (He et al, 2019).…”