CD38 catalyzes the synthesis of the Ca 2+ messenger, cyclic ADP-ribose (cADPR). It is generally considered to be a type II protein with the catalytic domain facing outside. How it can catalyze the synthesis of intracellular cADPR that targets the endoplasmic Ca 2+ stores has not been resolved. We have proposed that CD38 can also exist in an opposite type III orientation with its catalytic domain facing the cytosol. Here, we developed a method using specific nanobodies to immunotarget two different epitopes simultaneously on the catalytic domain of the type III CD38 and firmly established that it is naturally occurring in human multiple myeloma cells. Because type III CD38 is topologically amenable to cytosolic regulation, we used yeast-two-hybrid screening to identify cytosolic Ca 2+ and integrinbinding protein 1 (CIB1), as its interacting partner. The results from immunoprecipitation, ELISA, and bimolecular fluorescence complementation confirmed that CIB1 binds specifically to the catalytic domain of CD38, in vivo and in vitro. Mutational studies established that the N terminus of CIB1 is the interacting domain. Using shRNA to knock down and Cas9/guide RNA to knock out CIB1, a direct correlation between the cellular cADPR and CIB1 levels was demonstrated. The results indicate that the type III CD38 is functionally active in producing cellular cADPR and that the activity is specifically modulated through interaction with cytosolic CIB1.CD38 | cyclic ADP-ribose | membrane topology | calcium signaling | CIB1 C yclic ADP-ribose (cADPR) is a second-messenger molecule regulating the endoplasmic Ca 2+ stores in a wide range of cells spanning three biological kingdoms (1-4). Equally widespread is the enzyme activity that cyclizes nicotinamide-adenine dinucleotide (NAD) to produce cADPR (5). The first fully characterized enzyme was the ADP-ribosyl cyclase, a small soluble protein in Aplysia (6). It was thus surprising that the soluble cyclase shows sequence homology with the carboxyl (C-) domain of a mammalian membrane protein, CD38, a surface antigen first identified in lymphocytes (7). Subsequent work shows that CD38 is indeed a novel enzyme catalyzing not only the synthesis of cADPR but its hydrolysis to ADP-ribose as well (8,9). Gene ablation studies establish that CD38 is the dominant enzyme in mammalian tissues responsible for metabolizing cADPR and is important in regulating diverse physiological functions, ranging from neutrophil chemotaxis to oxytocin release and insulin secretion (10-12).It is generally believed that CD38 is a type II protein with a single transmembrane segment and a short amino(N)-tail of 21 residues extending into the cytosol, whereas the major portion of the molecule, its catalytic C-domain, is facing outside (13). This membrane topology seems paradoxical to CD38 functioning as a signaling enzyme producing an intracellular messenger. A vesicular mechanism has been proposed, positing that CD38 can be endocytosed, together with transport proteins, into endolysosomes. The transporters can then...