2021
DOI: 10.1007/s00013-021-01605-0
|View full text |Cite
|
Sign up to set email alerts
|

Subcritical polarisations of symplectic manifolds have degree one

Abstract: We show that if the complement of a Donaldson hypersurface in a closed, integral symplectic manifold has the homology of a subcritical Stein manifold, then the hypersurface is of degree one. In particular, this demonstrates a conjecture by Biran and Cieliebak on subcritical polarisations of symplectic manifolds. Our proof is based on a simple homological argument using ideas of Kulkarni–Wood.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 10 publications
0
0
0
Order By: Relevance