Although the absolute or carrier envelope phase (CEP) of a laser pulse is usually assumed to be effective for ultrashort and/or ultrastrong pulses only, it is demonstrated that these limitations can eventually be removed. Therefore, the excitation of a model positively charged homonuclear diatomic molecule, in which four electronic states are coupled by the laser field, is studied. In an initial step, nuclear wave packets in two dissociative states are prepared. Upon reaching the fragment channel, a weak pulse interacts with the system and prepares CEP-dependent asymmetries associated with electron density localized on one or the other fragmentation product.