Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Snow Mountain Volcanic Complex (SMVC; northern California, USA) is a well‐preserved example of a coherently‐exhumed subducted seamount. This study reappraises the genesis and evolution of this complex and surrounding units through detailed field, petro‐structural and geochronological analyses. This work demonstrates that the SMVC (a) erupted at ∼166 Ma as a hotspot volcano on the Farallon Plate, (b) entered the Franciscan subduction trench at ∼118 Ma, and (c) was subsequently subducted to a depth of ∼20 km (within the seismogenic zone), as shown by local blueschist‐facies assemblages formed at 0.6 GPa, 240°C. Transient subduction interfaces are preserved above, within, and below the SMVC, making it an exceptional target to study seamount subduction dynamics. Like other seamounts, the subduction‐related deformation was mainly accommodated along kilometer‐scale internal thrust zones lubricated by serpentinite/metasediments, and within centimeter‐thick crack‐seal veins recording pulsed fluid flow near peak metamorphism. No unequivocal proof of seismic activity was found. The integration of other seamounts (some potentially belonging to a former seamount chain) in the Franciscan Complex suggests that exhumed seamounts are more abundant than previously thought. Moreover, pressure‐temperature‐time estimates of subduction metamorphism for the surrounding units, combined with previous work constrain the thermal maturation of the subduction zone through time and the in‐sequence emplacement of the SMVC. Rapid changes in age of the subducted oceanic plate when subducted additionally hint to the subduction of large‐offset transform faults on the former Farallon plate. Such a process might have been linked to changes in accretion dynamics and magmatic flare‐ups in the arc.
The Snow Mountain Volcanic Complex (SMVC; northern California, USA) is a well‐preserved example of a coherently‐exhumed subducted seamount. This study reappraises the genesis and evolution of this complex and surrounding units through detailed field, petro‐structural and geochronological analyses. This work demonstrates that the SMVC (a) erupted at ∼166 Ma as a hotspot volcano on the Farallon Plate, (b) entered the Franciscan subduction trench at ∼118 Ma, and (c) was subsequently subducted to a depth of ∼20 km (within the seismogenic zone), as shown by local blueschist‐facies assemblages formed at 0.6 GPa, 240°C. Transient subduction interfaces are preserved above, within, and below the SMVC, making it an exceptional target to study seamount subduction dynamics. Like other seamounts, the subduction‐related deformation was mainly accommodated along kilometer‐scale internal thrust zones lubricated by serpentinite/metasediments, and within centimeter‐thick crack‐seal veins recording pulsed fluid flow near peak metamorphism. No unequivocal proof of seismic activity was found. The integration of other seamounts (some potentially belonging to a former seamount chain) in the Franciscan Complex suggests that exhumed seamounts are more abundant than previously thought. Moreover, pressure‐temperature‐time estimates of subduction metamorphism for the surrounding units, combined with previous work constrain the thermal maturation of the subduction zone through time and the in‐sequence emplacement of the SMVC. Rapid changes in age of the subducted oceanic plate when subducted additionally hint to the subduction of large‐offset transform faults on the former Farallon plate. Such a process might have been linked to changes in accretion dynamics and magmatic flare‐ups in the arc.
Ophiolite obduction, the process by which part of the oceanic crust overlaps the continental margin, is challenging when it comes to the geodynamic reconstruction of lithospheric processes. This buoyancy difference between dense oceanic crust and the relatively buoyant continental crust makes the obduction of the oceanic crust difficult, if not impossible, when only buoyancy forces are considered. To overcome the difficulties posed by the negative buoyancy, the initial configuration of the oceanic basins must have specific thermal and geometric constraints. Here we present a systematic investigation of the geometrical and the geodynamical parameters which control the ophiolite emplacement process. Our study reveals which parameters are the most important during ophiolite emplacement and which are the most optimal geometries that favour ophiolite emplacement. We focus on “Tethyan” ophiolites which are characterized by relatively small inferred basin size and are commonly found in Mediterranean region. Based on a combination of various parameters, we identified the most susceptible configurations for ophiolite obduction. Our models demonstrate, in agreement to geological data, that the obducted lithosphere must be young and the length of the Ocean-Continent-Transition zone must be relatively sharp in order to achieve ophiolite obduction. Thematic collection: This article is part of the Ophiolites, melanges and blueschists collection available at: https://www.lyellcollection.org/topic/collections/ophiolites-melanges-and-blueschists Supplementary material: https://doi.org/10.6084/m9.figshare.c.6922526
The petrogenesis of contemporary igneous and metamorphic rocks is commonly explained by plate tectonics, but how far back in time does this relationship hold? Here we investigate whether the distinctive petrological features of recent ocean crust, subduction-related magmatism and regional metamorphism can be unambiguously identified in the Archean geological record. From an igneous perspective based on geological relationships and Th – Nb systematics, it is difficult to claim that any Archean ‘ophiolite’ was part of a global plate system rather than deriving from a plume ascending through attenuating lithosphere. Furthermore, the rarity of subduction-related rocks, particularly their plutonic equivalents which have good preservation potential, is consistent with the concept of local convergence and short-lived subduction. From a metamorphic perspective, the appearance of orogenic eclogites in the Paleoproterozoic, the widespread occurrence of blueschists and ultrahigh pressure metamorphic rocks since the late Neoproterozoic, and a change from a unimodal to a bimodal distribution of metamorphic T/P during the Proterozoic, are responses to secular cooling and the evolution of tectonics since the Archean. Our petrological perspective is that plate tectonics analogous to that on Earth today is probably a post Archean phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.