The preparation of single grain, Y-Ba-Cu-O (YBCO) bulk superconductors by top-seeded melt-growth (TSMG) usually involves precursor powders that contain a uniform distribution of the constituent YBa 2 Cu 3 O 7−δ (Y-123) and Y 2 BaCuO 5 (Y-211) phase compounds. However, it has been observed that the concentration of Y-211 particles in the fully melt processed superconducting bulk increases significantly with distance from the seed, which results in a degradation of superconducting properties towards the edge and bottom of the sample. Here we investigate the effect of preparing bulk YBCO superconductors by TSMG using spatially graded Y-211/Y-123 precursor powder. The graded precursor bulks were prepared with a maximum composition of 40 wt% Y-211 in the vicinity of the seed, which decreased to 30 wt% and then 20 wt% towards the bottom and edge of the green body. Standard samples were melt processed from precursor powders containing 30 wt% Y-211 to enable comparison. The field trapping ability, T c and J c , of three graded and two standard samples were investigated and compared statistically. The distribution of Y-211 particles along different growth directions of the samples was analysed, and any crystallographic misorientation was investigated. The observed distribution of Y-211 particles in YBCO is explained qualitatively by trapping/pushing theory, and its correlation with the superconducting properties of the melt processed bulk samples has been analysed. Finally, the practical feasibility of the graded technique is evaluated.