, de, L. P. H. (2015). A five dimensional implementation of the flamelet generated manifolds technique for gas turbine application. AIP Conference Proceedings, 1648, 030012-1/5. DOI: 10.1063/1.4912329
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract. In the present paper the Flamelet-Generated Manifold (FGM) chemistry reduction method is implemented and extended for the inclusion of all the features that are typically observed in stationary gas-turbine combustion. These consist of stratification effects, heat loss and turbulence. The latter is included by coupling FGM with the Reynolds Averaged Navier Stokes (RANS) model. Three control variables are included for the chemistry representation: the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the stratification effect is expressed by the mixture fraction. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach, which is considered for progress variable and mixture fraction. This results in two extra control variables: progress variable variance and mixture fraction variance. The resulting manifold is five-dimensional, in which the dimensions are progress variable, enthalpy, mixture fraction, progress variable variance and mixture fraction variance. In addition, a highly turbulent and swirling flame in a gas turbine model combustor is computed, in order to test the 5-D FGM implementation. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. The implemented combustion model retains most of the physical accuracy of a detailed simulation while drastically reducing its computational time, paving the way for new developments of alternative fuel usage in a cleaner and more efficient combustion.