Current computational models suggest that paranoia may be explained by stronger higher-order beliefs about others and increased sensitivity to environments. However, it is unclear whether this applies to social contexts, and whether it is specific to harmful intent attributions, the live expression of paranoia. We sought to fill this gap by fitting a computational model to data (n = 1754) from a modified serial dictator game, to explore whether pre-existing paranoia could be accounted by specific alterations to cognitive parameters characterising harmful intent attributions. We constructed a ‘Bayesian brain’ model of others’ intent, which we fitted to harmful intent and self-interest attributions made over 18 trials, across three different partners. We found that pre-existing paranoia was associated with greater uncertainty about other’s actions. It moderated the relationship between learning rates and harmful intent attributions, making harmful intent attributions less reliant on prior interactions. Overall, the magnitude of harmful intent attributions was directly related to their uncertainty, and importantly, the opposite was true for self-interest attributions. Our results explain how pre-existing paranoia may be the result of an increased need to attend to immediate experiences in determining intentional threat, at the expense of what is already known, and more broadly, they suggest that environments that induce greater probabilities of harmful intent attributions may also induce states of uncertainty, potentially as an adaptive mechanism to better detect threatening others. Importantly, we suggest that if paranoia were able to be explained exclusively by core domain-general alterations we would not observe differential parameter estimates underlying harmful-intent and self-interest attributions.