2023
DOI: 10.1007/s00186-023-00818-z
|View full text |Cite
|
Sign up to set email alerts
|

Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization

Abstract: We show that under a separation property, a $${{{\mathcal {Q}}}}$$ Q -minimal point in a normed space is the minimum of a given sublinear function. This fact provides sufficient conditions, via scalarization, for nine types of proper efficient points; establishing a characterization in the particular case of Benson proper efficient points. We also obtain necessary and sufficient conditions in terms of scalarization for approximate Benson and Henig proper efficient points. The sepa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance