We design a cosmological model that expands at a speed less than that of free fall and which allows accelerations of the recession velocity. In addition, the underlying geometry of the model can be adjusted in such a way that attractive forces arise in the cosmos, forces whose sources are not matter. This could explain dark matter as a property of space and one could also address the question of why galactic systems are not subject to expansion. Journal of Modern Physics and the Schwarzschild model both are based on the static de Sitter metric as seed metric. In the first case, this metric is a metric on a pseudo-hyper sphere, in the second case it is a metric on a cap of a hypersphere. From both metrics repulsive forces are derivable, which can be interpreted in the dS case as the cause of an expansion. We describe a process that switches these forces from repulsive to attractive. Although the elaboration of the P-model requires a considerable amount of mathematics, the underlying physical principles of the Schwarzschild world are well-known, but little respected in the literature.We note that carrying out this procedure is only possible within the framework of the tetrad calculus. Coordinate systems play a minor role, they are only used for basic mathematical operations. In Sec. 2 we briefly outline the static de Sitter model, we explain the use of 4-bein systems, the Ricci-rotation coefficients, and the graded derivative. We discuss the representation of the Einstein field equations in tetrad form and point out that this is useful for many cosmological models and advisable for their clarity. In Sec. 3, we first discuss a static P-model in order to clarify the basic structure of such models. In Sec. 4 and Sec. 5 we develop the expanding P-model and discuss it in Sec. 6.