Echinococcosis in humans is a zoonotic infection caused by larval stages (metacestodes) of cestode species of the genus Echinococcus. Cystic echinococcosis (CE) is caused by Echinococcus granulosus, alveolar echinococcosis (AE) is caused by E. multilocularis, and polycystic forms are caused by either E. vogeli or E. oligarthrus. In untreated cases, AE has a high mortality rate. Although control is essentially feasible, CE remains a considerable health problem in many regions of the northern and southern hemispheres. AE is restricted to the northern hemisphere regions of North America and Eurasia. Recent studies have shown that E. multilocularis, the causative agent of AE, is more widely distributed than previously thought. There are also some hints of an increasing significance of polycystic forms of the disease, which are restricted to Central and South America. Various aspects of human echinococcosis are discussed in this review, including data on the infectivity of genetic variants of E. granulosus to humans, the increasing invasion of cities in Europe and Japan by red foxes, the main definitive hosts of E. multilocularis, and the first demonstration of urban cycles of the parasite. Examples of emergence or reemergence of CE are presented, and the question of potential spreading of E. multilocularis is critically assessed. Furthermore, information is presented on new and improved tools for diagnosing the infection in final hosts (dogs, foxes, and cats) by coproantigen or DNA detection and the application of molecular techniques to epidemiological studies. In the clinical field, the available methods for diagnosing human CE and AE are described and the treatment options are summarized. The development of new chemotherapeutic options for all forms of human echinococcosis remains an urgent requirement. A new option for the control of E. granulosus in the intermediate host population (mainly sheep and cattle) is vaccination. Attempts are made to reduce the prevalence of E. multilocualaris in fox populations by regular baiting with an anthelmintic (praziquantel). Recent data have shown that this control option may be used in restricted areas, for example in cities, with the aim of reducing the infection risk for humans