Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Underground telecommunication cables are highly susceptible to damage from excavation activities. Preventing accidental damage to underground telecommunication cables is critical and necessary. In this study, we present field trial results of monitoring excavation activities near underground fiber cables using an intensity-based phase-sensitive optical time-domain reflectometer (φ-OTDR). The reasons for choosing intensity-based φ-OTDR for excavation monitoring are presented and analyzed. The vibration signals generated by four typical individual excavation events, i.e., cutting, hammering, digging, and tamping at five different field trial sites, as well as five different mixed events in the fifth field trial site were investigated. The findings indicate that various types of events can generate vibration signals with different features. Typically, fundamental peak frequencies of cutting, hammering and tamping events ranged from 30 to 40 Hz, 11 to 15 Hz, and 30 to 40 Hz, respectively. Digging events, on the other hand, presented a broadband frequency spectrum without a distinct peak frequency. Moreover, due to differences in environmental conditions, even identical excavation events conducted with the same machine may also generate vibration signals with different characteristics. The diverse field trial results presented offer valuable insights for both research and the practical implementation of excavation monitoring techniques for underground cables.
Underground telecommunication cables are highly susceptible to damage from excavation activities. Preventing accidental damage to underground telecommunication cables is critical and necessary. In this study, we present field trial results of monitoring excavation activities near underground fiber cables using an intensity-based phase-sensitive optical time-domain reflectometer (φ-OTDR). The reasons for choosing intensity-based φ-OTDR for excavation monitoring are presented and analyzed. The vibration signals generated by four typical individual excavation events, i.e., cutting, hammering, digging, and tamping at five different field trial sites, as well as five different mixed events in the fifth field trial site were investigated. The findings indicate that various types of events can generate vibration signals with different features. Typically, fundamental peak frequencies of cutting, hammering and tamping events ranged from 30 to 40 Hz, 11 to 15 Hz, and 30 to 40 Hz, respectively. Digging events, on the other hand, presented a broadband frequency spectrum without a distinct peak frequency. Moreover, due to differences in environmental conditions, even identical excavation events conducted with the same machine may also generate vibration signals with different characteristics. The diverse field trial results presented offer valuable insights for both research and the practical implementation of excavation monitoring techniques for underground cables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.