Connections between Plio-Pleistocenic tectonic activity and geomorphological evolution were studied in the Pardu Valley and Quirra Valley (Ogliastra, East Sardinia). The intensive Quaternary tectonic activity in Sardinia linked to the opening of the Tyrrhenian Basin is known. In Eastern Sardinia, it manifests with an uplift that is recorded by geomorphological indicators, such as deep-seated gravitational slope deformation, fluvial captures, engraved valleys, waterfalls, and heterogeneous water drainage. The Pardu River flows from the NW toward the SE and then abruptly changes direction toward the NE. At this point, a capture elbow adjacent to the current head of the Quirra River is well developed. The Quirra River, in its upstream part, flows at altitudes approximately 200 m higher than the Pardu River. It also shows an oversized and over-flooded valley with respect to the catchment area upstream. This setting indicates that the Pardu River, which previously flowed south along the Quirra River, was captured by the Pelau River. We analyzed long-term landslides with lateral spreading and sackung characteristics, which involve giant carbonate blocks and underlying foliated metamorphites in both valleys. The use of LiDAR, high-resolution uncrewed aerial vehicle digital photogrammetry (UAV-DP), and geological, structural, and geomorphological surveys enabled a depth morphometric analysis and the creation of interpretative 3D models of DGSDs. Space-borne interferometric synthetic aperture radar (InSAR) data using ERS and Sentinel-1 satellites identified downslope movement of up to 20 mm per year in both Pardu Valley flanks. Multi-source and multi-scale data showed that the state of activity of the DGSDs is closely linked to the geomorphological evolution of the catchment areas of the Rio Pardu and Rio Quirra. The intense post-capture erosion acted in the Rio Pardu Valley, giving it morphometric characteristics that were favorable to the current evolution of the DGSDs, while the Rio Quirra Valley presents paleo-DGSDs that have been fossilized by pre-capture terraced alluvial deposits.