Abstract:Considering Riemannian submersions, we find necessary and sufficient conditions for when sub‐Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub‐Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.