2019
DOI: 10.1002/mana.201800352
|View full text |Cite
|
Sign up to set email alerts
|

Submersions and curves of constant geodesic curvature

Abstract: Considering Riemannian submersions, we find necessary and sufficient conditions for when sub‐Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub‐Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?