2021
DOI: 10.35848/1347-4065/abef5f
|View full text |Cite
|
Sign up to set email alerts
|

Submonolayer stacking growth of In(Ga)As nanostructures for optoelectronic applications: an alternative for Stranski–Krastanov growth

Abstract: An overview on the submonolayer stacking (SMLS) growth, by molecular beam epitaxy, is given for the growth of InAs-based quantum dots (QDs) and quantum well islands (QWIs) on GaAs in comparison with Stranski–Krastanov (SK) growth. While the size, shape, and density control of QDs by the substrate temperature or source fluxes has already been demonstrated by SK, SMLS provides novel possibilities due to its higher degree of freedom to control. By SMLS, QDs can be grown with higher size/shape control, and QWIs wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 71 publications
0
1
0
2
Order By: Relevance
“…Nowadays, with increasing application requirements to semiconductor light-emitting devices, it is becoming increasingly difficult to change physical properties including Stokes shift to further enhance device performance using traditional quantum structures. Therefore, semiconductor hybrid quantum structures, such as quantum well-dot or well-wire structures, have been proposed and investigated by researchers, as these hybrid configurations have initially exhibited their potentials in achieving some outstanding optical properties that cannot be independently realized through simple energy-band engineering in a single traditional quantum structure [4,5].…”
Section: Introductionmentioning
confidence: 99%
“…Nowadays, with increasing application requirements to semiconductor light-emitting devices, it is becoming increasingly difficult to change physical properties including Stokes shift to further enhance device performance using traditional quantum structures. Therefore, semiconductor hybrid quantum structures, such as quantum well-dot or well-wire structures, have been proposed and investigated by researchers, as these hybrid configurations have initially exhibited their potentials in achieving some outstanding optical properties that cannot be independently realized through simple energy-band engineering in a single traditional quantum structure [4,5].…”
Section: Introductionmentioning
confidence: 99%
“…Com os problemas apresentados, nos dedicamos a encontrar uma alternativa para o crescimento dos pontos quânticos a fim de resolver as deficiências inerentes ao método de Stranski-Krastanov e, consequentemente, aumentar a performance dos QDIPs. A alternativa encontrada foi a utilização de um novo método de formação de pontos quânticos descoberto nos anos 90 (26,27,28), mas pouco utilizado até agora devido à maior complexidade de crescimento. Nele, os pontos quânticos são formados através da deposição sucessiva de frações de monocamadas de InAs e são conhecidos como pontos quânticos de submonocamadas (SMLQDs, submonolayer quantum dots).…”
Section: Motivação E Objetivo Da Teseunclassified
“…Com a possibilidade de crescer pontos quânticos com a altura desejada (variando apenas o número de repetições do ciclo básico), alta densidade (a densidade de ilhas 2D de InAs pode chegar a 1×10 12 cm −2 (11,28,27)) e sem a presença de wetting layer (Já que só são depositadas camadas de InAs com espessuras menores que 1 MC), os poucos trabalhos publicados de detectores infravermelhos contendo SMLQDs em suas estruturas apresentaram resultados extremamente promissores (28,9). Apesar disso, as condições de crescimento para obtenção dessas estruturas ainda não foram bem determinadas nem otimizadas, o que dificulta sua reprodutibilidade, mas dá a possibilidade de obter-se ganhos futuros na performance dos dispositivos.…”
Section: Pontos Quânticos De Submonocamadasunclassified