Abstract. Composition operators with analytic symbols on some reproducing kernel Hilbert spaces of entire functions on a complex Hilbert space are studied. The questions of their boundedness, seminormality and positivity are investigated. It is proved that if such an operator is bounded, then its symbol is a polynomial of degree at most 1, i.e., it is an affine mapping. Fock's type model for composition operators with linear symbols is established. As a consequence, explicit formulas for their polar decomposition, Aluthge transform and powers with positive real exponents are provided. The theorem of Carswell, MacCluer and Schuster is generalized to the case of Segal-Bargmann spaces of infinite order. Some related questions are also discussed.2010 Mathematics Subject Classification. Primary 47B32, 47B33; Secondary 47B20, 47A80.