Subspace-Based Anomaly Detection for Large-Scale Campus Network Traffic
Xiaofeng Zhao,
Qiubing Wu
Abstract:With the continuous development of information technology and the continuous progress of traffic bandwidth, the types and methods of network attacks have become more complex, posing a great threat to the large-scale campus network environment. To solve this problem, a network traffic anomaly detection model based on subspace information entropy flow matrix and a subspace anomaly weight clustering network traffic anomaly detection model combined with density anomaly weight and clustering ideas are proposed. Und… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.