Simultaneous orthogonal matching pursuit (SOMP) and block OMP (BOMP) are two widely used techniques for sparse support recovery in multiple measurement vector (MMV) and block sparse (BS) models respectively. For optimal performance, both SOMP and BOMP require a priori knowledge of signal sparsity or noise variance. However, sparsity and noise variance are unavailable in most practical applications. This letter presents a novel technique called generalized residual ratio thresholding (GRRT) for operating SOMP and BOMP without the a priori knowledge of signal sparsity and noise variance and derive finite sample and finite signal to noise ratio (SNR) guarantees for exact support recovery. Numerical simulations indicate that GRRT performs similar to BOMP and SOMP with a priori knowledge of signal and noise statistics.