Photolysis of an aryl sulfide containing 5,6-dihydropyrimidine (1) at 350 nm produces high yields of thymidine and products resulting from trapping of 5,6-dihydrothymidin-5-yl radical by O2 or thiols. Thymidine is believed to result from disproportionation of the radical pair originally generated from C-S bond homolysis in 1 on the microsecond timescale, which is significantly shorter than other photochemical transformations of modified nucleotides into their native forms. Duplex DNA containing 1 is destabilized, presumably due to disruption of π-stacking. Incorporation of 1 within the binding site of the restriction endonuclease EcoRV, provides a photochemical switch for turning on the enzyme's activity. In contrast, 1 is a substrate for endonuclease VIII and serves as a photochemical off switch for this base excision repair enzyme. Modification 1 also modulates the activity of the 10–23 DNAzyme despite its incorporation into a non-duplex region. Overall, dihydropyrimidine 1 shows promise as a tool that provides spatiotemporal control over DNA structure on the miscrosecond tiimescale.