We have previously shown that a single application of the growth factors ciliary
neurotrophic factor (CNTF) or fibroblast growth factor 2 (FGF-2) to the crushed
optic nerve of the frog,
Rana pipiens
, increases the numbers
and elongation rate of regenerating retinal ganglion cell axons. Here we
investigate the effects of these factors on the numbers and types of macrophages
that invade the regeneration zone. In control PBS-treated nerves, many
macrophages are present 100 μm distal to the crush site at 1 week after injury;
their numbers halve by 2 weeks. A single application of CNTF at the time of
injury triples the numbers of macrophages at 1 week, with this increase compared
to control being maintained at 2 weeks. Application of FGF-2 is equally
effective at 1 week, but the macrophage numbers have fallen to control levels at
2 weeks. Immunostaining with a pan-macrophage marker, ED1, and a marker for
M2-like macrophages, Arg-1, showed that the proportion of the putative M2
phenotype remained at approximately 80% with all treatments. Electron microscopy
of the macrophages at 1 week shows strong phagocytic activity with all
treatments, with many vacuoles containing axon fragments and membrane debris. At
2 weeks with PBS or FGF-2 treatment the remaining macrophages are less
phagocytically active, containing mainly lipid inclusions. With CNTF treatment,
at 2 weeks many of the more numerous macrophages are still phagocytosing axonal
debris, although they also contain lipid inclusions. We conclude that the
increase in macrophage influx seen after growth factor application is beneficial
for the regenerating axons, probably due to more extensive removal of
degenerating distal axons, but also perhaps to secretion of growth-promoting
substances.