Featured Application: The present study intends to show the potentiality of pulsed thermographic imaging to quantitatively characterise hidden defects in Carbon Fibre Reinforced Polymers. By comparing the performance of different depth retrieval procedures, it was possible to evaluate the produced depth estimation accuracy and to define the impact of different experimental and analysis parameters in quantitative analysis.
Abstract:In the present study, a Carbon Fibre Reinforced Polymer (CFRP) sample of trapezoid shape, consisting of internal artificial delaminations of various sizes and depth locations, is investigated by means of optical pulsed thermography for the retrieval of quantitative depth information. The main objectives of this work are to evaluate the produced depth estimation accuracy from two contrast-based depth inversion procedures as well as to correlate the acquired results with characteristics such as the location and size of the detected features and with analysis parameters such as the selection of the sound area. Quantitative analysis is performed in both the temporal and frequency domains, utilising, respectively, the informative parameters of thermal contrast peak slope time and blind frequency. The two depth retrieval procedures are applied for the depth estimation of features ranging in size from 3 mm to 15 mm and in depth from 0.2 mm to 1 mm. The results of the present study showed that the two different analyses provided efficient depth estimations, with frequency domain analysis presenting a greater accuracy. Nevertheless, predicting errors were observed in both cases and the factors responsible for these errors are defined and discussed.