Abstract. Leaching is one major pathway of phosphorus (P) and nitrogen (N) losses from forest ecosystems. Using a full factorial N×P fertilization and irrigation experiment, we investigated the leaching of dissolved organic and inorganic P (DOP and DIP) and N (DON and DIN) from organic layers (litter, Oe/Oa horizons) and mineral A horizons at two European beech sites of contrasting P status. Leachates showed highest DIP and DIN concentrations in summer and lowest in winter, while dissolved organic forms remained rather constant throughout seasons. During the dry and hot summer 2018, DOC : DOP and DOC : DON ratios in leachates were particularly narrow, suggesting a release of microbial P due to cell lysis by drying and rewetting. This effect was stronger at the low-P site. The estimated annual mean fluxes from the Oe/Oa horizons in the non-fertilized treatment were 60 and 30 mg m−2 yr−1 for total dissolved P and 730 and 650 mg m−2 yr−1 for total dissolved N at the high-P and the low-P site, respectively. Fluxes of P were highest in the organic layers and decreased towards the A horizon, likely due to sorption by minerals. Fertilization effects were additive at the high-P, but antagonistic at the low-P site: At the high-P site, fertilization with +N, +P, and +N+P increased total P fluxes from the Oe/Oa horizon by +33, +51, and +75 %, while the respective increases were +198, +156, and +10 % at the low-P site. The positive N-effect on DIP leaching possibly results from a removed N limitation of phosphatase activity at the low-P site. Fluxes of DOP remained unaffected by fertilization. Fluxes of DIN and DON from the Oe/Oa horizons increased upon +N and +N+P, but not upon +P fertilization. In conclusion, the estimated P fluxes from the A horizons were comparable in magnitude to reported atmospheric P inputs, suggesting that these systems do not deplete in P due to leaching. However, a particularly high sensitivity of DIP leaching to hotter and drier conditions suggests accelerated P losses under the expected more extreme future climate conditions. Increases of P leaching due to fertilization and drying-rewetting were higher in the low-P system, implying that the low-P system is more susceptible to environmental future changes.