Subtraction Descriptors in Machine Learning for Optimizing the Cocatalyst Effect of Cobalt Phosphate on Hematite Photoanodes
Siyan Chen,
Yuya Nagai,
Zhenhua Pan
et al.
Abstract:In the quest for sustainable energy solutions, the optimization of the photoelectrochemical (PEC) performance of hematite photoanodes through cocatalysts represents a promising avenue. This study introduces a novel machine learning approach, leveraging subtraction descriptors, to isolate and quantify the specific effects of cobalt phosphate (Co-Pi) as a cocatalyst on hematite's PEC performance. By integrating data from various analytical techniques, including photoelectrochemical impedance spectroscopy and ult… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.