Somatostatin (SST) is a regulatory peptide that activates G protein-coupled receptors comprised of five members (somatostatin receptors (SSTRs) 1-5). Despite the broad use of SST and its analogs in clinical practice, the spectrum of SST activities has been incompletely defined. Recently, it has been demonstrated that SST can be a chemoattractant for hematopoietic precursor cells. Since hepatic oval cells (HOCs) share common characteristics with hematopoietic stem cells, we hypothesized that SST could act as a chemoattractant for HOCs by stimulating SSTRs. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot assay revealed an increased expression of SST in the 2-acetyl-aminofluorene (2AAF)/partial hepatectomy (PHx) HOC induction model. Immunohistochemical staining showed the expression of SST in 2AAF/PHx-treated rat liver, as compared to normal liver. Proliferation and migration assays demonstrated that the increase of SST was related to migration of HOCs, but not their proliferation. RT-PCR and quantitative real-time PCR showed that SSTR4 was preferentially expressed by HOCs. Western blot assay and immunohistochemical staining confirmed the expression of SSTR4 by HOCs. In addition, pretreatment with anti-SSTR4 antibody cultures resulted in a dramatic reduction of cell migration as compared to that of control. Lastly, SST stimulated the rearrangement of actin filaments in HOCs, while HOCs treated with anti-SSTR4 antibody failed to do so. These results suggest a positive role for SST in the migration of HOCs, and that this effect is mediated through SSTR4.