The acid-sensing ion channels (ASICs) open in response to extracellular acidic pH, and individual subunits display differential sensitivity to protons and calcium. ASIC1a acts as a high affinity proton sensor, whereas ASIC2a requires substantially greater proton concentrations to activate. Using chimeras composed of ASIC1a and ASIC2a, we determined that two regions of the extracellular domain (residues 87-197 and 323-431) specify the high affinity proton response of ASIC1a. These two regions appear to undergo intersubunit interactions within the multimeric channel to specify proton sensitivity. Single amino acid mutations revealed that amino acids around Asp 357 play a prominent role in determining the pH dose response of ASIC1a. Within the same region, mutation F352L abolished PcTx1 modulation of ASIC1a. Surprisingly, we determined that another area of the extracellular domain was required for calcium-dependent regulation of ASIC1a activation, and this region functioned independently of high affinity proton sensing. These results indicate that specific regions play overlapping roles in pH-dependent gating and PcTx1-dependent modulation of ASIC1a activity, whereas a distinct region determines the calcium dependence of ASIC1a activation.The acid-sensing ion channels (ASICs) 3 are proton-gated ion channels expressed in neurons throughout the central and peripheral nervous system (1-3). ASICs are activated by extracellular acidosis, and protons act as ligands triggering channel opening (4). Disruption of the accn2 gene (which encodes ASIC1) dramatically reduces proton-gated currents in central neurons and alters a variety of behaviors, including fear, learning, and memory (5, 6). ASIC1 also contributes to neuronal damage and death during the prolonged acidosis accompanying cerebral ischemia (7). Specifically, mice with disruptions in the accn2 gene display 60% smaller lesion size compared with normal mice in models of stroke (8). Application of PcTx1, a venom peptide that prevents ASIC1a activation, is similarly neuroprotective, even when administered hours after injury (8, 9). Thus, ASIC1a represents a novel pharmacological target for the prevention of neuronal death following stroke.Mammals have four genes encoding ASICs (accn1 to -4) that encode at least six different ASIC subunits (1-3, 10). Like all members of the DEG/ENaC family, individual ASIC subunits have two transmembrane regions separated by a large cysteinerich extracellular region. Three ASIC subunits associate to form homomeric or heteromeric channels with distinct biophysical characteristics (11)(12)(13)(14). Specifically, ASIC1a homomeric channels activate at pH values much closer to neutral pH compared with ASIC2a homomeric channels. The high affinity proton sensitivity of ASIC1a plays a prominent role in acidosisinduced neuronal death, and modulators that alter the pH dose response of ASIC1a affect neuronal sensitivity to prolonged acidosis (8, 9, 15). For example, the neuroprotective venom peptide PcTx1 increases the proton sensitivity of the ...