We investigate the magnetic coupling of Ni centers embedded in two-dimensional metal-coordination networks self-assembled from 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on Ag(100) and Au(111) surfaces. X-ray magnetic circular dichroism measurements show that single Ni adatom impurities assume a spin-quenched configuration on both surfaces, while Ni atoms coordinating to TCNQ ligands recover their magnetic moment and exhibit ferromagnetic coupling. The valence state and the ferromagnetic coupling strength of the Ni coordination centers depend crucially on the underlying substrate due to the different charge state of the TCNQ ligands on the two surfaces. The results suggest a superexchange coupling mechanism via the TCNQ ligands.