The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient, and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9°50′N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly more than 300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations.larval dispersal | population connectivity | Ctenopelta | Lepetodrilus | East Pacific Rise I n marine benthic systems, dispersal in a planktonic larval stage influences the dynamics and spatial structure of populations and can be critical for regional persistence of species. It is informative to consider these systems in the framework of metapopulation theory (1) as a balance between extinction and dispersal-mediated colonization. The extent to which a local marine population is open (i.e., the proportion of recruits that come from other locales) may increase its resilience to perturbation (2, 3), but recruitment of progeny back into the natal site also contributes to persistence (4). Larval dispersal between deep-sea hydrothermal vent communities is an intriguing topic in this context because the habitat is spatially disjunct and populations are subject to local extinctions. A major challenge to solving questions of population openness (connectivity) in marine systems, however, is determining whether the source of each recruit is local or remote because the larvae are difficult to track. Consequently, fundamental questions about how vent populations persist and what physical and biological processes control their connectivity remain unresolved despite more than three decades of research (5).Population genetic studi...