In automotive systems, some of the engine control tasks are triggered by specifi c crankshaft rotation angles and are designed to adapt their functionality based on the angular velocity of the engine. This paper proposes a new task model for specifying such a type of real-time activities and presents an approach for analyzing the system feasibility under deadline scheduling for different scenarios. In particular, a feasibility test is derived for tasks under steady-state conditions (constant speed), as well as in dynamic conditions (constant acceleration). A design method is also discussed to determine the most suitable switching speeds for adapting the functionality of tasks without exceeding a desired utilization. Finally, a number of research directions are highlighted to extend the current results to more complex and realistic scenarios.