This paper investigates continuous-time asset-liability management under benchmark and mean-variance criteria in a jump diffusion market. Specifically, the authors consider one risk-free asset, one risky asset and one liability, where the risky asset's price is governed by an exponential Lévy process, the liability evolves according to a Lévy process, and there exists a correlation between the risky asset and the liability. Two models are established. One is the benchmark model and the other is the mean-variance model. The benchmark model is solved by employing the stochastic dynamic programming and its results are extended to the mean-variance model by adopting the duality theory. Closed-form solutions of the two models are derived.