BACKGROUND
Readily available feedstock and biocompatibility make carbohydrate‐based hydrogels promising materials for biomedical applications. However, carbohydrate‐based crosslinkers are rather underexplored when compared with crosslinkers derived from fossil resources. In this study, novel fully bio‐based hydrogels derived from enzymatically produced d‐fructose and d‐glucose methacrylate monomers were synthesized with different amounts of d‐fructose dimethacrylate crosslinker.
RESULTS
The use of a carbohydrate‐based crosslinker endows hydrogels with high swelling coefficients, up to 2400%, and superior mechanical resistance (compressive modulus up to 9.5 kPa with a maximum stress up to 50 kPa) compared with conventional crosslinkers based on fossil resources. Hydrogels shape and crosslinking density influences hydrogel morphology, swelling behavior and mechanical resistance. Moreover, hydrogels presented cell viability, biodegradability and hydrolysis‐resistance over a wide range of pH.
CONCLUSION
The use of a highly hydrophilic crosslinker based on carbohydrate for hydrogels synthesis enables the use of high crosslinker concentration, which improves mechanical properties, however with minor loss of the water swelling capacity, compared with conventional fossil‐based crosslinkers. This is an important advantage over conventional crosslinkers based on fossil resources. Moreover, slab hydrogels hold higher stress under compression–decompression cycles, and present higher resistance to hydrolysis in basic medium due to the thicker pore walls than cylindrical ones. © 2019 Society of Chemical Industry