The water hyacinth (WH)-based activated carbon (WHac) has been prepared by an acid treatment, pyrolytic carbonization, and alkali activation processes for using as electrode materials of electrochemical energy storage devices. The pyrolytic carbonization process was performed at a variety of temperature (600, 700, and 800℃) for 2 h. The ash-prepared samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). The benefits of activated carbon with large uniform surface area leading to maximum specific capacitance of 98.3 F⸳g-1 and good cycling stability. Attributed to low-cost make the water hyacinth activated carbon has the potential for use as electrode materials of energy storage devices. Moreover, the decreasing of water hyacinths maintains environmental equilibrium and is sustainable.