Climate variability coupled with anthropogenic pressures is the most critical driver in the Himalayan region for forest ecosystem vulnerability. Dactylorhiza hatagirea (D.Don) Soo is an important yet highly threatened medicinal orchid from the Himalayan region. Poor regenerative power and growing demand have resulted in the steep decline of its natural habitats populations. The present study aims to identify the habitat suitability of D. hatagirea in the Western Himalaya using the maximum entropy model (MaxEnt). The community climate system model (CCSM ver. 4) based on representative concentration pathways (RCPs) was used to determine suitable future areas. Sixteen least correlated (< 0.8) bioclimatic, topographical and geomorphic variables were used to construct the species climatic niche. The dominant contributing variables were elevation (34.85%) followed by precipitation of the coldest quarter (23.04%), soil type (8.77%), land use land cover (8.26%), mean annual temperature (5.51%), and temperature seasonality (5.11%). Compared to the present distribution, habitat suitability under future projection, i.e., RCP 4.5 and RCP 8.5 (2050 and 2070), was found to shift to higher elevation towards the northwest direction, while lower altitudes will invariably be less suitable. Further, as compared to the current distribution, the climatic niche space of the species is expected to expand in between11.41–22.13% in the near future. High habitats suitability areas are mainly concentrated in the forest range like Dharchula and Munsyari range, Pindar valley, Kedarnath Wildlife Sanctuary, West of Nanda Devi Biosphere Reserve, and Uttarkashi forest division. The present study delineated the fundamental niche baseline map of D. hatagirea in the Western Himalayas and highlighted regions/areas where conservation and management strategies should be intensified in the next 50 years. In addition, as the species is commercially exploited illegally, the information gathered is essential for conservationists and planners who protect the species at the regional levels.