The preservation of the nuclear genome's integrity is paramount for the viability and overall health of cells, tissues, and organisms. DNA, being susceptible to damage under physiological conditions and vulnerable to both endogenous and environmental factors, faces constant threats.
To assess DNA damage and repair within individual eukaryotic cells, the comet assay presents itself as a versatile, gel electrophoresis-based, relatively simple, and highly sensitive method. Originally designed to monitor DNA damage and repair within populations of mammalian cells, the comet
assay has now found applications across diverse domains, including yeast, protozoa, plants, and invertebrates. This technique has proven invaluable in cryopreservation studies, serving as a valuable adjunct for determining suitable cryopreservation protocols. These protocols encompass choices
related to cryoprotectants, sample preparation, as well as storage conditions in terms of time and temperature. In the realm of animal cryopreservation research, the comet assay stands as a gold-standard method for assessing DNA integrity. Nevertheless, when applied in plant-oriented investigations,
additional efforts are essential due to the distinct nature of plant cells and associated technical challenges. This review elucidates the fundamental principles underlying the comet assay, discusses its current iterations, and delineates its applications in the cryopreservation of both animal
and plant specimens. Moreover, we delve into the primary challenges confronting the comet assay's utility as a monitoring tool in the context of plant sample cryopreservation.