Extracellular polymeric substance (EPS) secretion was examined in the stalked marine diatom Achnanthes longipes Ag. in defined medium. This common biofouling diatom exhibited an absolute requirement for bromide for stalk production and substratum attachment, whereas elevated iodide concentrations in the growth medium inhibited stalk formation and adhesion. Varying EPS morphologtes resulted from altering bromide and iodide levels: pads, stalk‐pads, stalks, and no EPS. Cells showed no differences in growth with bromide or iodide concentrations, indicating that they were not physiologically stressed under conditions that impaired EPS secretion. Cells grown in elevated iodide secreted significantly more soluble extracellular carbohydrate into the medium, suggesting that the EPS was soluble and unable to be polymerized into a morphologically distinct gel. By replacing sulfate with methionine, the diatom lost its ability to form stalks even in the presence of bromide, indicating that free sulphate may be required for proper cross‐linking of stalk polymers. Lotus‐FITC, a fluorescent‐tagged lectin, preferentially labeled the EPS and, thus, was used to visualize and quantify EPS secretion along a bromide gradient in conjunction with an image analysis system. This technique demonstrated a direct correlation between the amount of bromide present in the medium and the specific EPS morphology formed.