This study reports the synthesis of mesoporous metal-modified nitrogen doped activated carbon (AC-N-Mo) from date seeds by ZnCl2 activation and its applicability for selective adsorptive desulfurization of dibenzothiophene (DBT). The AC-N-Mo exhibits higher adsorption capacity for DBT at 100 mg-S/L with the maximum value of 99.7% corresponding to 19.94 mg-S/g at room temperature than the unmodified carbon with 17.96 mg-S/g despite its highest surface area and pore volume of 1027 m2g− 1 and 0.55 cm3g− 1 respectively. The adsorption capacity breakthrough follows the order AC-N-Mo > AC-Mo > AC > AC-N. AC-N-Mo also displayed excellent selectivity in the presence of aromatics (toluene, naphthalene and 1-methylisoquinoline). The enhancement in the DBT uptake capacities of AC-N-Mo is attributed to synergy effect of nitrogen heteroatom that aid well dispersion of molybdenum nanoparticles on carbon surface thereby improving its surface chemistry and promising textural characteristics. The kinetic studies showed that the DBT adsorption proceeds via pseudo-second order kinetics while the isotherm revealed that both Freundlich and Langmuir fit the data but Freundlich fit the data more accurately for the best performing adsorbent. The physico-chemical properties (surface area, pore volume, carbon content, particle size etc.) of as-prepared adsorbents namely; AC, AC-N, AC-N-Mo and AC-Mo were characterized by N2- physisorption, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Spectroscopy/Energy Dispersive Spectroscopy (SEM/EDS), Raman Spectroscopy (RS), Fourier Transform Infrared Spectroscopy (FTIR) and Ammonia-Temperature-Programmed Desorption (NH3-TPD).