About 20% of fresh fruits and vegetables are rejected for not meeting the superficial aesthetic standards (color, shape, and size). Part of the food production is not used in the human food chain. The transformation of these fresh products into novel re-valuable ones is a challenge for a sustainable food industry. This research studies an alcoholic fermentation fruit-based wine from two melon (Cucumis melo L.) cultivars: Jimbee® (smooth and yellow skin with orange flesh) and Okashi® (netted yellow-orange skin with pale green flesh). The melon juice (must) was fermented by Saccharomyces cerevisiae and enriched in sucrose and organic acids to achieve alcoholic fermentation, acidity, and flavors, obtaining a fruity-flavored and dry melon-based wine with 10° alcoholic grade, in both melon cultivars. The volatile compounds were measured by GC-MS and the odor activity value (OAV) was calculated. The Jimbee and Okashi melon wines increased their aromatic profile due to an increment in medium-chain fatty acid ethyl esters such as ethyl hexanoate, ethyl octanoate, and ethyl decanoate (OAV > 1), which contributed to the fruity aroma. Other volatile compounds such as ethyl 9-decenoate and phenethyl acetate (OAV > 1) appeared in the Okashi wine, which brought a floral aroma. For sensory evaluation (40–100), the Jimbee cultivar, with its orange flesh, scored 68.2 and the Okashi cultivar, with pale green flesh, scored 82.8, which was the preferred melon-based wine. This is an example of a circular economy model to produce a fruit-based wine with commercial potential and satisfactory sensory evaluation.