Unprecedented advances and innovation in technology and short lifespans of electronic devices have resulted in the generation of a considerable amount of electronic waste (e-waste). Polymeric components present in electronic waste contain a wide range of organic materials encompassing a significant portion of carbon (C). This source of carbon can be employed as a reducing agent in the reduction of oxides from another waste stream, i.e., steelmaking slag, which contains ≈20 wt%–40 wt% iron oxide. This waste slag is produced on a very large scale by the steel industry due to the nature of the process. In this research, the polymeric residue leftover from waste printed circuit boards (PCBs) after a physical-chemical recycling process was used as the source of carbon in the reduction of iron oxide from electric arc furnace (EAF) slag. Prior to the recycling tests, the polymer content of e-waste was characterized in terms of composition, morphology, thermal behavior, molecular structure, hazardous elements such as Br, the volatile portion, and the fixed carbon content. After the optimization of the ratio between the waste slag (Fe source) and the waste polymer (the carbon source), the microstructure of the recycled alloy showed no Br, Cl, S, or other contamination. Hence, two problematic and complex waste streams were successfully converted to a clean alloy with 4 wt% C, 4% Cr, 2% Si, 1% Mn, and 89% Fe.