Soft x-ray absorption spectroscopy is a powerful probe of surface electronic and geometric structure in metals, semiconductors, and thin films. Because these techniques generally require ultrahigh vacuum, corresponding studies of volatile liquid surfaces have hitherto been precluded. We describe the design and implementation of an x-ray experiment based on the use of liquid microjets, permitting the study of volatile liquid surfaces under quasi-equilibrium conditions by synchrotron-based spectroscopy. The liquid microjet temperatures are also characterized by Raman spectroscopy, which connects our structural studies with those conducted on liquid samples under equilibrium conditions. In recent experiments, we have observed and quantified the intermolecular surface relaxation of liquid water and methanol and have identified a large population of ''acceptor-only'' molecules at the liquid water interface.