This report characterizes fuel cycle options in four areas -resource utilization, radioactive waste, fuel cycle safety, and proliferation resistance and physical protection. Graphs and tables provide insights regarding which features of a fuel cycle option most impact performance for a given characteristic. For example, some characteristics are insensitive to reactor technology but very sensitive to whether and what is recycled. Sometimes it is variations within a class of options that matter. For still other characteristics, the pattern is that a feature impacts performance only under certain situations and is irrelevant in others.Resource utilization: The utilization of uranium ranges from <1% for all thermal reactor concepts, up to ~10% for fast reactors with no fuel recycle, and approaching 100% for sustained recycle with fast reactors. The patterns for utilization of thorium are less clear due to less study of option space.Radioactive waste: There are many possible ways to reduce radiotoxicity and/or the mass of waste streams having both high-heat and high long-term radiotoxicity. The combination of decay heat and radiotoxicity complicates waste disposal and there is no international precedent for disposal of waste that has both high decay heat and high long-term radiotoxicity. The value of a given improvement method can range from very little to orders of magnitude depending on which other improvement methods are also used in a fuel cycle. For example, low processing loss of transuranic material to waste has little value in a single-recycle strategy but can have orders of magnitude impact in sustained recycle.Fuel cycle safety: Safety is too important to ignore during concept selection and development. Historical experience suggests that some types of safety issues are easier to resolve in concept development, detailed design, and/or operation than others. "Easier" can mean lower design cost to add safety systems as a design goes from concept to details, fewer iterations and delays with regulators, easier operation, a more transparent safety case engendering higher trust, less chance for expensive changes during construction, less chance of expensive retrofitting during operation, etc. Co-location of facilities, e.g., separation and fuel fabrication, is one of the ways that the potential risk of future fuel cycles may be reduced. Although the radiological risk from transportation has been shown to be low, public concerns are high and any industrial transport involves common daily transportation risks.Proliferation resistance and physical protection: There are many perspectives in this area, but there is no tool and no single indicator that covers the entire area and all four stages from material acquisition, transportation, transformation of material, and weapon fabrication. Conflicting claims can be often be better understood if it is realized that each claim can be valid within its subset of the entire area.
Technology Insights and Perspectivesiv September 30, 2010
SUMMARYThis report characterize...