SUMMARY
The migration of Arctic char Salvelinus alpinus from freshwater to seawater requires a substantial reorganization of the osmoregulatory tissues to regulate plasma ion levels. These modifications have an inherent metabolic cost, which must be met through the upregulation of intermediary metabolism. Arctic char intermediary metabolism was monitored during the initial 96 h of seawater acclimation through measurement of key enzymes in gill, liver, red and white muscle as well as tissue and blood free amino acid (FAA) levels, and plasma glucose and non-esterified fatty acid content. In general, seawater exposure stimulated large changes in amino acid metabolism, but no change in lipid or carbohydrate metabolism. White muscle FAA content increased significantly following seawater exposure, with levels of essential FAAs doubling after 96 h. Similar increases were seen in the plasma, suggesting a rapid mobilization of FAAs to the circulation. These changes were accompanied by significant increases in the activities of enzymes involved in amino acid metabolism in the gill, liver, red and white muscle, suggesting seawater-acclimated fish have an enhanced capacity for energy production from amino acids. Increased energy requirements were evident in the gill of seawater-acclimated char, as citrate synthase activity increased significantly. The results of this study suggest a rapid upregulation of amino acid metabolism may be critical for the successful acclimation of Arctic char to seawater.