The Tibetan Plateau has undergone significant climate warming in recent decades, and precipitation has also become increasingly variable. Much research has explored the effects of climate change on vegetation on this plateau. As potential vegetation buried in the soil, the soil seed bank is an important resource for ecosystem restoration and resilience. However, almost no studies have explored the effects of climate change on seed banks and the mechanisms of these effects. We used an altitudinal gradient to represent a decrease in temperature and collected soil seed bank samples from 27 alpine meadows (3,158–4,002 m) along this gradient. A structural equation model was used to explore the direct effects of mean annual precipitation (MAP) and mean annual temperature (MAT) on the soil seed bank and their indirect effects through aboveground vegetation and soil environmental factors. The species richness and abundance of the aboveground vegetation varied little along the altitudinal gradient, while the species richness and density of the seed bank decreased. The similarity between the seed bank and aboveground vegetation decreased with altitude; specifically, it decreased with MAP but was not related to MAT. The increase in MAP with increasing altitude directly decreased the species richness and density of the seed bank, while the increase in MAP and decrease in MAT with increasing altitude indirectly increased and decreased the species richness of the seed bank, respectively, by directly increasing and decreasing the species richness of the plant community. The size of the soil seed bank declined with increasing altitude. Increases in precipitation directly decreased the species richness and density and indirectly decreased the species richness of the seed bank with increasing elevation. The role of the seed bank in aboveground plant community regeneration decreases with increasing altitude, and this process is controlled by precipitation but not temperature.