Multiple myeloma (MM) is a plasma cell neoplasm that proceeds through a premalignant state of monoclonal gammopathy of unknown significance; however, the molecular events responsible for myelomagenesis remain uncharacterized. To identify cellular pathways deregulated in MM, we addressed that sumoylation is homologous to ubiquitination and results in the attachment of the ubiquitin-like protein Sumo onto target proteins. Sumoylation was markedly enhanced in MM patient lysates compared with normal plasma cells and expression profiling indicated a relative induction of sumoylation pathway genes. The Sumoconjugating enzyme Ube2I, the Sumoligase PIAS1, and the Sumo-inducer ARF were elevated in MM patient samples and cell lines. Survival correlated with expression because 80% of patients with low UBE2I and PIAS1 were living 6 years after transplantation, whereas only 45% of patients with high expression survived 6 years. UBE2I encodes the sole Sumoconjugating enzyme in mammalian cells and cells transfected with a dominantnegative sumoylation-deficient UBE2I mutant exhibited decreased survival after radiation exposure, impaired adhesion to bone marrow stroma cell and decreased bone marrow stroma cell-induced proliferation. UBE2I confers cells with multiple advantages to promote tumorigenesis and predicts decreased survival when combined with PIAS1. The sumoylation pathway is a novel therapeutic target with implications for existing proteasomal-
IntroductionMultiple myeloma (MM) is a neoplasia hallmarked by the clonal expansion of malignant plasma cells (PCs) and the accumulation of a monoclonal immunoglobulin (Ig) or Ig fragment detectable in the serum and/or urine. [1][2][3] MM is the second most commonly diagnosed hematologic malignancy in the Western world, accounts for nearly 20% of all hematologic malignancies, and despite conventional treatment or high-dose therapy with stem cell transplantation is generally considered incurable. 4,5 Recent advances in mechanistic understanding and treatment modalities have extended median survival to exceed 6 years, and 10% of MM patients survive beyond 10 years. [6][7][8] Although high-dose therapy and novel agents that include thalidomide, its analog lenalidomide, and proteasome inhibitors have significantly improved prognosis, patient survival remains highly variable and cannot be accurately predicted with current models in part because the cellular pathways that determine patient response to treatment remain unidentified.In eukaryotes, a highly conserved multienzyme system is used in a sequential process to covalently attach the polypeptide ubiquitin to proteins targeted for degradation. 9,10 Ubiquitination is an essential process that maintains cellular homeostasis through dynamic switches in protein functional states. Ubiquitin-protein conjugates are then degraded in by the ATP-dependent 26S proteasome complex. 11,12 Deregulation of ubiquitination in tumor models has resulted in malignant transformation and tumor progression. 13 In myeloma, proteasomal-dependent catabolis...