2019
DOI: 10.31857/s0869-56524842131-133
|View full text |Cite
|
Sign up to set email alerts
|

Suns are convex in tangent directions

Abstract: A direction d is called a tangent direction to the unit sphere S of a normed linear space s  S and lin(s + d) is a tangent line to the sphere S at s imply that lin(s + d) is a one-sided tangent to the sphere S, i. e., it is the limit of secant lines at s. A set M is called convex with respect to a direction d if [x, y]  M whenever x, y in M, (y - x) || d. We show that in a normed linear space an arbitrary sun (in particular, a boundedly compact Chebyshev set) is convex with respect to any tangent direction of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?