Phenol formaldehyde reaction solution (PFS) was used to synthesize urea-formaldehyde resins (PFSUF resins) with low formaldehyde content. In addition, the prepared PFSUF resins were used as adhesives to bond bamboo particleboards. Mechanical properties, fracture morphology, water absorption ratio, and dimensional stability of bamboo particleboards have been studied by tensile tests, SEM tests, water absorption analysis, and swelling ratio analysis, respectively. The results demonstrate that the main ingredient of PFS is phenol formaldehyde intermediate 2,4,6-trimethylolphenate and proper amount of PFS can be used to reduce the formaldehyde content of UF resins effectively. The results also show that bamboo particleboards bonded with PFSUF resins exhibit better mechanical properties, water resistance, and dimensional stability than that bonded with pure UF resin. However, the results of TG and mechanical properties analysis exhibit that alternative curing agents to ammonium chloride should be studied to improve the curing properties of the PFSUF resins with low formaldehyde content. Taken together, this work provides a method of preparing environment-friendly PFSUF resins with low phenol and low formaldehyde content and the prepared resins have potential application in wood industry.