The level of understanding the mechanisms of homogeneously catalyzed reactions correlates with information about reactive intermediates. Therefore, in-situ methods -that is, investigations based upon physical techniques conducted during the reactions -are highly desirable and important. For this purpose, a considerable scope of in-situ techniques based upon time-proven classical types of spectroscopy has been developed. Since many of the industrially important catalyzed reactions require the use of high pressures and high temperatures for optimum performance, ideally, these techniques should accommodate such conditions. Contemporary in-situ methods include specialized forms of optical or magnetic resonance spectroscopy, in particular vibration and rotation spectroscopy, such as infrared or Raman spectroscopy, or nuclear magnetic resonance (NMR) [1,2]. This chapter will focus on the latter technique.
In-Situ NMR SpectroscopyFor the elucidation of chemical reaction mechanisms, in-situ NMR spectroscopy is an established technique. For investigations at high pressure either sample tubes from sapphire [3] or metallic reactors [4] permitting high pressures and elevated temperatures are used. The latter represent autoclaves, typically machined from copper-beryllium or titanium-aluminum alloys. An earlier version thereof employs separate torus-shaped coils that are imbedded into these reactors permitting in-situ probing of the reactions within their interior. However, in this case certain drawbacks of this concept limit the filling factor of such NMR probes; consequently, their sensitivity is relatively low, and so is their resolution. As a superior alternative, the metallic reactor itself may function as the resonator of the NMR probe, in which case no additional coils are required. In this way gas/liquid reactions or reactions within supercritical fluids can be studied
313The Handbook of Homogeneous Hydrogenation. Edited by J. G. de Vries and C. J. Elsevier