<p>Suppose <em>G</em>(<em>V,E</em>) be a connected simple graph and suppose <em>u,v,x</em> be vertices of graph <em>G</em>. A bijection <em>f</em> : <em>V</em> ∪ <em>E</em> → {1,2,3,...,|<em>V</em> (<em>G</em>)| + |<em>E</em>(<em>G</em>)|} is called super local edge antimagic total labeling if for any adjacent edges <em>uv</em> and <em>vx</em>, <em>w</em>(<em>uv</em>) 6= <em>w</em>(<em>vx</em>), which <em>w</em>(<em>uv</em>) = <em>f</em>(<em>u</em>)+<em>f</em>(<em>uv</em>)+<em>f</em>(<em>v</em>) for every vertex <em>u,v,x</em> in <em>G</em>, and <em>f</em>(<em>u</em>) < <em>f</em>(<em>e</em>) for every vertex <em>u</em> and edge <em>e</em> ∈ <em>E</em>(<em>G</em>). Let γ(<em>G</em>) is the chromatic number of edge coloring of a graph <em>G</em>. By giving <em>G</em> a labeling of <em>f</em>, we denotes the minimum weight of edges needed in <em>G</em> as γ<em>leat</em>(<em>G</em>). If every labels for vertices is smaller than its edges, then it is be considered γ<em>sleat</em>(<em>G</em>). In this study, we proved the γ sleat of paths and its derivation.</p>